

General Description

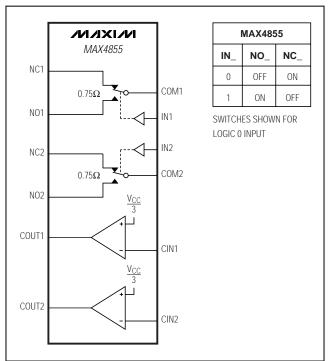
The MAX4855 dual, single-pole/double-throw (SPDT) switch operates from a single +2V to +5.5V supply and features rail-to-rail signal handling. The MAX4855 has low on-resistance (0.75Ω) with a +3V supply making it ideal for audio switching applications in portable devices. The device also integrates two internal comparators that can be used for headphone detection or mute/send key functions.

The MAX4855 is available in the space-saving (3mm x 3mm), 16-pin thin QFN package and operates over the extended temperature range of -40°C to +85°C.

Applications

Speaker Headset Switching Audio-Signal Routing Cellular Phones **Notebook Computers** PDAs and Other Handheld Devices

Features


- ♦ Audio Signal Routing
- ♦ 0.75Ω On-Resistance
- ♦ 0.18Ω On-Resistance Flatness
- ♦ 0.07Ω Channel-to-Channel Matching
- ♦ Rail-to-Rail Signal Handling
- **♦ 2 Integrated Comparators**
- ♦ 1.8V Logic Compatible
- ♦ 2V to 5.5V Supply Range
- ♦ Available in a Space-Saving (3mm x 3mm), 16-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4855ETE	-40°C to +85°C	16 TQFN-EP*	ABY

^{*}EP = Exposed paddle.

Block Diagram/Truth Table

Pin Configuration

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} , IN , CIN to GND0.3V to +6.0V
NO , NC , COM , COUT (Note 1)0.3V to (V _{CC} + 0.3V)
COUT_ Continuous Current±20mA
Closed Switch Continuous Current COM_, NO_, NC±300mA
Peak Current COM_, NO_, NC_
(pulsed at 1ms, 50% duty cycle)±400mA
Peak Current COM_, NO_, NC_
(pulsed at 1ms, 10% duty cycle)±500mA

Continuous Power Dissipation ($T_A = +70^{\circ}$ C	C)
16-Pin Thin QFN (derate 20.8mW/°C ab	ove +70°C)1667mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NO, NC, or COM exceeding V_{CC} or GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit forward-diode current to maximum current rating.

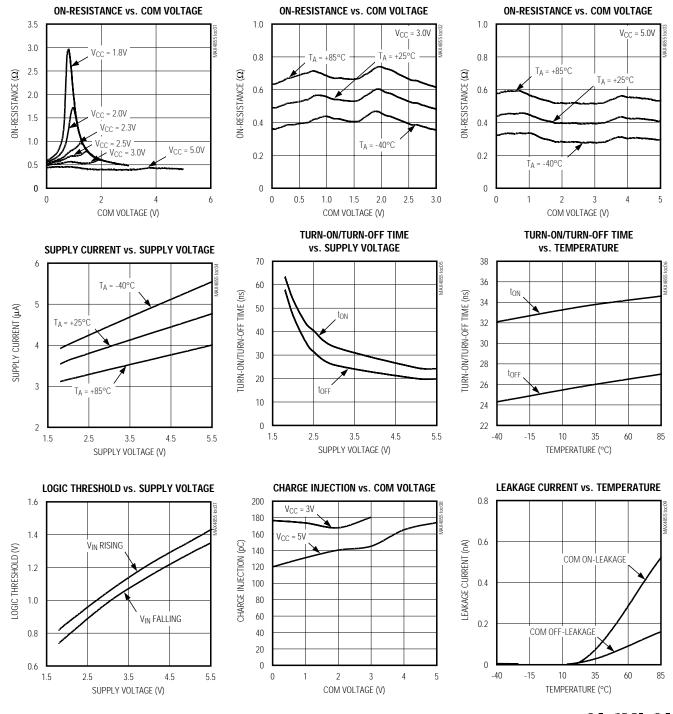
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc			2		5.5	V
Supply Current	Icc	$V_{CC} = 5.5V$, $V_{IN} = 0V$ or V_{CC}	2		5	10	μΑ
ANALOG SWITCH							
Analog Signal Range	V _{NO_} , V _{NC_} , V _{COM_}			0		V _{CC}	V
On-Resistance (Note 3)	RON	V _{CC} = 2.7V, I _{COM} = 100mA, V _{NC} or V _{NO} = 0V	T _A = +25°C		0.75	1	Ω
On-Resistance (Note 3)	KON	to V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			1.1	22
On-Resistance Match Between Channels	AD	V _{CC} = 2.7V, I _{COM} = 100mA,	$T_A = +25^{\circ}C$		0.075	0.120	
(Notes 3, 4)	ΔR _{ON}	V_{NC} or V_{NO} = 1.5V	$T_A = -40$ °C to $+85$ °C			0.135	Ω
On-Resistance Flatness	D-:	V _{CC} = 2.7V, I _{COM} =	$T_A = +25$ °C		0.18	0.275	
(Note 5)	Rflat	100mA, V _{NC} or V _{NO} = 0.75V, 1.5V, 1.75V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.3	Ω
NO_/NC_ Off-Leakage		V _{CC} = 5.5V, V _{NC} or V _{NO} =	T _A = +25°C	-2		+2	A
Current (Note 2)	loff	1V or 4.5V, V _{COM} _ = 4.5V or 1V	$T_A = -40$ °C to $+85$ °C	-10		+10	nA nA
COM_ On-Leakage		$V_{CC} = 5.5V$; V_{NC} or $V_{NO} = 1.00$	T _A = +25°C	-2		+2	A
Current (Note 2)	I _{ON}	1V, 4.5V, or floating; V _{COM} _ = 1V, 4.5V, or floating	$T_A = -40$ °C to $+85$ °C	-15		+15	nA
DYNAMIC CHARACTERI	STICS						
Turn-On Time	+	V _{CC} = 2.7V, V _{NO} or V _{NC} =	T _A = +25°C		40	60	nc
	ton	1.5V, $R_L = 300\Omega$, $C_L = 50pF$ (Figure 1)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			100	ns

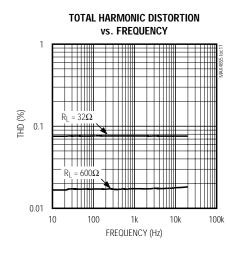
ELECTRICAL CHARACTERISTICS (continued)

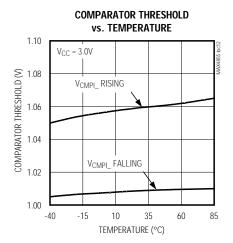

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Note 2)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
Turn-Off Time	torr	V _{CC} = 2.7V, V _{NO} or V _{NC} = 1.5V, R _L = 300Ω, C _L = 50pF			30	40	ns
Turn-Oil filine	toff	(Figure 1)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			60	112
Break-Before-Make Time	+-	V _{CC} = 2.7V, V _{NO} or V _{NC} = 1.5V, R _L = 50Ω, C _L = 50pF	$T_A = +25^{\circ}C$		15		
Delay (Note 3)	t _D	(Figure 2)	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2			ns
Charge Injection	Q	$V_{COM} = 1.5V$, $R_S = 0\Omega$, $C_L = 0$	= 1.0nF (Figure 3)		170		рС
Off-Isolation (Note 6)		f = 100kHz, V _{COM} _= 1V _{RMS} , (Figure 4)	$R_L = 50\Omega$, $C_L = 5pF$		-75		dB
Crosstalk	VCT	f = 100kHz, V _{COM} = 1V _{RMS} , (Figure 4)	$R_L = 50\Omega$, $C_L = 5pF$		-93		dB
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, C_L	_ = 5pF (Figure 4)		38		MHz
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V _{COM} _ =	$1V + 2V_{P-P}, R_L = 32\Omega$		0.07		%
NO_/NC_ Off- Capacitance	C _{OFF}	f = 1MHz (Figure 5)			50		pF
COM On-Capacitance	Con	f = 1MHz (Figure 5)			150		рF
DIGITAL I/O (IN_)							
Input-Logic High Voltage	VIH	$V_{CC} = 2V \text{ to } 3.6V$		1.4			V
Input Logic riigii voltage	VIII	$V_{CC} = 3.6V \text{ to } 5.5V$		1.8			v
Input-Logic Low Voltage	VIL	$V_{CC} = 2V \text{ to } 3.6V$				0.5	V
		$V_{CC} = 3.6V \text{ to } 5.5V$				0.8	
Input Leakage Current	I _{IN}	$V_{IN} = 0 \text{ or } 5.5V$		-0.5		+0.5	μΑ
COMPARATOR	T	T		1			
Comparator Range				0		5.5	V
Comparator Threshold		V _{CC} = 2V to 5.5V, falling inpu	ut	0.3 x V _{CC}	0.33 x V _{CC}	0.36 x V _{CC}	V
Comparator Hysteresis		$V_{CC} = 2V \text{ to } 5.5V$			50		mV
Comparator Output High Voltage		ISOURCE = 1mA		V _{CC} - 0.4V			V
Comparator Output Low Voltage		I _{SINK} = 1mA				0.4	V
Comparator Switching		Rising input (Figure 6)			2.5		μs
Time		Falling input (Figure 6)			0.5		μο

- **Note 2:** Specifications are 100% tested at $T_A = +85$ °C only, and guaranteed by design and characterization over the specified temperature range.
- **Note 3:** Guaranteed by design and characterization; not production tested.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- **Note 6:** Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

Typical Operating Characteristics


 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$



Typical Operating Characteristics (continued)

($V_{CC} = 3.0V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 8	N.C.	No Connection. Not internally connected.
2	CIN1	Inverting Input for Comparator 1
3	CIN2	Inverting Input for Comparator 2
4	COM1	Common Terminal for Analog Switch 1
5	NO1	Normally Open Terminal for Analog Switch 1
6	GND	Ground
7	NC2	Normally Closed Terminal for Analog Switch 2
9	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.
10	COM2	Common Terminal for Analog Switch 2
11	COUT1	Output for Comparator 1
12	NO2	Normally Open Terminal for Analog Switch 2
13	COUT2	Output for Comparator 2
14	Vcc	Supply Voltage. Bypass to GND with a 0.01µF capacitor as close to the pin as possible.
15	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a logic HIGH connects COM1 to NO1.
16	NC1	Normally Closed Terminal for Analog Switch 1
EP	_	Exposed Paddle. Connect to PC board ground plane.

Detailed Description

The MAX4855 dual SPDT, low on-resistance, low-voltage, analog switch operates from a +2V to +5.5V supply and can handle signals up to the power rails. In addition, the MAX4855 integrates two internal comparators that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately 1/3 of Vcc.

Applications Information Digital Control Inputs

The logic inputs (IN) accept up to +5.5V even if the supply voltages are below this level. For example, with a +3.3V V_{CC} supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving IN_ rail-to-rail minimizes power consumption. For a +2V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 1.8V (high).

Analog Signal Levels

The on-resistance of these switches changes very little for analog input signals across the entire supply voltage range (see the Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

Comparator

The positive terminal of the comparator is internally set to V_{CC}/3. When the negative terminal (CIN_) is below the threshold (V_{CC}/3), the comparator output (COUT_) is high. When CIN_rises above V_{CC}/3, COUT_ is low.

The comparator threshold allows for detection of headphones since headphone audio signals are typically biased to $V_{CC}/2$.

Power-Supply Sequencing Caution: Do not exceed the absolute maximum rat-

ings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply VCC before applying analog signals, especially if the analog signal is not current-limited.

Test Circuits/Timing Diagrams

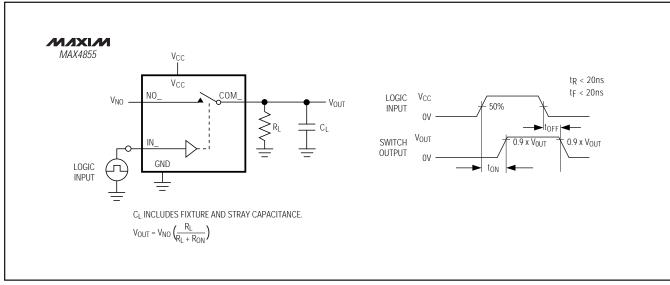


Figure 1. Switching Time

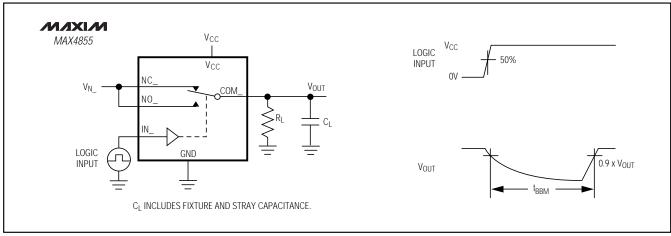


Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

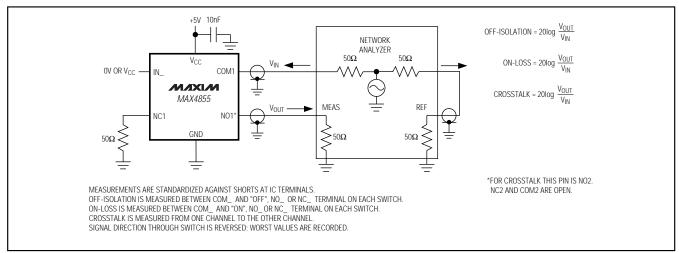


Figure 4. On-Loss, Off-Isolation, and Crosstalk

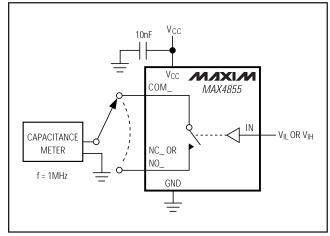


Figure 5. Channel Off-/On-Capacitance

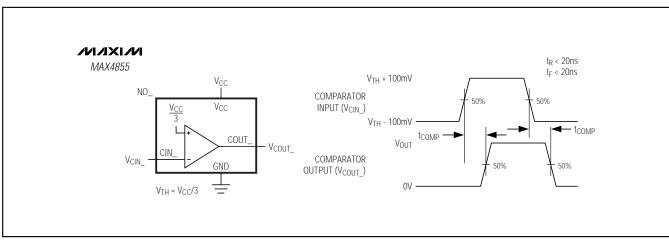
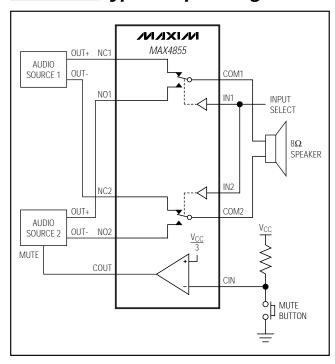
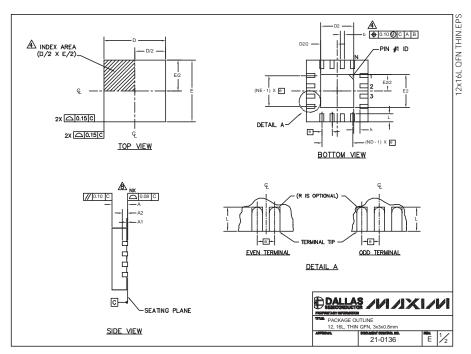



Figure 6. Comparator Switching Time

Typical Operating Circuit


Chip Information

TRANSISTOR COUNT: 735 PROCESS: CMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

PKG		12L 3x3			16L 3x3		1										
REF.	MINL	NOM.	MAX.	MIN.	NOM.	MAX.	1			EXF	POSEI	D PAD	VARI	ATIO	NS		
A	0.70	0.75	0.80	0.70	0.75	0.80	1	PKG. CODES		D2			E2				DOWN
ь	0.20	0.26	0.30	0.20	0.25	0.30	1	CODES	MIN.	NOM.	MAX	MIN.	NOM.	MAX.	PIN ID	JEDEC	ALLOWE
D	2.90	3.00	3.10	2.90	3.00	3.10	1	T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	NO
E	2.80	3.00	3.10	2.90	3.00	3.10]	T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1	YES
	_	0.50 BSC	_	_	0.50 BSC]	T1633-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
L	0.45	0.55	0.65	0.30	0.40	0.50	1	T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	YES
N		12			16		1	T1683F-3	0.65	0.80	0.96	0,65	0.80	0.95	0.225 x 45°	WEED-2	N/A
ND	_	3		_	4		1	T1633-4	0.95	1.1D	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
NE	<u> </u>	3		<u> </u>	4		1										
A1	0	0.02	0.05	0	0.02	0.05	1										
A2 k	0.25	0.20 REF	·	0.25	0.20 REF	· -	1										
ALL D	IMENS	IONS AF	RE IN MI	LLIMETE	ERS. AN		IE Y14.5M- E IN DEGF										
DIME ALL D N IS T THE T JESD WITH MARK	THE TO TERMIN 95-1 SI IN THE	IONS AR TAL NUM IAL #1 ID PP-012. ZONE IN ATURE.	RE IN MI MBER C DENTIFII DETAIL NDICATI	LLIMETE F TERM ER AND .S OF TE ED. THE	ERS. AN IINALS. TERMIN ERMINAL TERMIN	GLES AR IAL NUME . #1 IDEN IAL #1 ID	E IN DEGF BERING CO TIFIER AR ENTIFIER I	REES. ONVENTION S SE OPTIONAL, MAY BE EITH	, BUT M IER A M	IUST BE	E LOCA R	ATED					
DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME FROM	THE TO TERMIN 95-1 S IN THE KED FE NSION I TERM	IONS AR TAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE IINAL TIF	RE IN MI MBER C DENTIFII DETAIL NDICATI ES TO M	LLIMETE F TERM ER AND S OF TE ED. THE	ERS. ANI IINALS. TERMIN ERMINAL TERMIN	GLES AR IAL NUME . #1 IDEN IAL #1 ID RMINAL A	E IN DEGR BERING CO TIFIER AR ENTIFIER I	REES. DIVENTION S OPTIONAL MAY BE EITH ASURED BET	, BUT M IER A M WEEN (IUST BI IOLD O 0.20 mn	E LOCA R n AND (ATED	n				
DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME FROM ND AI DEPC COPL	IMENS THE TO TERMIN 95-1 S IN THE GED FE NSION I TERMIN ND NE DPULAT	IONS AF ITAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE IINAL TIF REFER T TON IS P	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M C. TO THE POSSIBL	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. AN- IINALS. TERMINAL TERMINAL TERMIN ZED TER R OF TE SYMMET POSED I	GLES AR IAL NUME . #1 IDEN IAL #1 ID RMINAL A RMINALS RICAL FA	E IN DEGR BERING CO TIFIER AR ENTIFIER I ND IS MEA ON EACH SHION. IK SLUG A	REES. ONVENTION S SE OPTIONAL, MAY BE EITH	, BUT M IER A M WEEN (DE RES	IUST BE IOLD O 0.20 mn PECTI\	E LOCA R n AND (ATED	ENGON THE PROPERTY OF THE PROP	ETARY INF		VI /	JX.
DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME FROM ND AI DEPC COPL	IMENS THE TO TERMIN 95-1 S IN THE GED FE NSION I TERMIN ND NE DPULAT	IONS AF ITAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE IINAL TIF REFER T TON IS P	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M C. TO THE POSSIBL	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. AN- IINALS. TERMINAL TERMINAL TERMIN ZED TER R OF TE SYMMET POSED I	GLES AR IAL NUME #1 IDEN IAL #1 ID RMINAL A RMINALS RICAL FA HEAT SIN	E IN DEGR BERING CO TIFIER AR ENTIFIER I ND IS MEA ON EACH SHION. IK SLUG A	REES. DIVENTION S IE OPTIONAL MAY BE EITH ASURED BET H D AND E SIE	, BUT M IER A M WEEN (DE RES	IUST BE IOLD O 0.20 mn PECTI\	E LOCA R n AND (ATED	ENGON THE PROPERTY OF THE PROP	PACK/	AGE OUTLINE		X
DIME ALL D N IS 1 THE 1 JESD WITH MARK DIME FROM ND AI DEPC COPL	IMENS THE TO TERMIN 95-1 S IN THE GED FE NSION I TERMIN ND NE DPULAT	IONS AF ITAL NUM IAL #1 ID PP-012. ZONE IN ATURE. b APPLIE IINAL TIF REFER T TON IS P	RE IN MI MBER O DENTIFII DETAIL NDICATI ES TO M C. TO THE POSSIBL	LLIMETE F TERM ER AND S OF TE ED. THE METALLI NUMBE LE IN A S THE EX	ERS. AN- IINALS. TERMINAL TERMINAL TERMIN ZED TER R OF TE SYMMET POSED I	GLES AR IAL NUME #1 IDEN IAL #1 ID RMINAL A RMINALS RICAL FA HEAT SIN	E IN DEGR BERING CO TIFIER AR ENTIFIER I ND IS MEA ON EACH SHION. IK SLUG A	REES. DIVENTION S IE OPTIONAL MAY BE EITH ASURED BET H D AND E SIE	, BUT M IER A M WEEN (DE RES	IUST BE IOLD O 0.20 mn PECTI\	E LOCA R n AND (ATED	ENGON THE PROPERTY OF THE PROP	PACKA 12, 16L	GE OUTLINE THIN QFN, 3		

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600